
The person in the room doing the talking is the person doing the learning!!

Attend to teacher talk time vs student talk time.

What routines and activities are in place that allow students to communicate mathematically?

Number Talks or other Numeracy routines are "class starters" that foster class discussion. Students are given opportunities to explain their reasoning. The teacher role in this activity is to support mathematical dialog, and scribe student thinking. Problems that are chosen are "open middle" or "low floor, high ceiling" with many entry points. Often they are opinion tasks where there is no incorrect answer. Students on IIPs, students on adapted curriculum, and students in combined grades can all participate. (Would you Rather math, Which One Doesn't Belong" etc.

https://buildingmathematicians.wordpress.com/2016/08/19/how-to-set-up-positive-norms/

Communication

Communication [C]

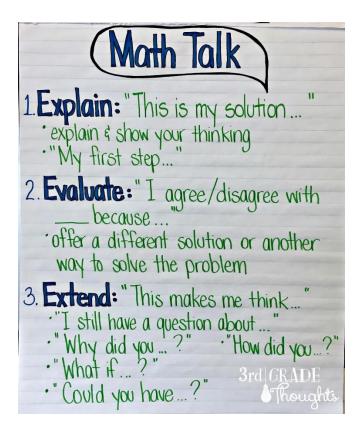
Students need opportunities to read about, represent, view, write about, listen to, and discuss mathematical ideas using both personal and mathematical language and symbols. These opportunities allow students to create links between their own language, ideas, and prior knowledge, the formal language and symbols of mathematics, and new learnings.

Communication is important in clarifying, reinforcing, and modifying ideas, attitudes, and beliefs about mathematics. Students should be encouraged to use a variety of forms of communication while learning mathematics. Students also need to communicate their learning using mathematical terminology, but only when they have had sufficient experience to develop an understanding for that terminology.

Concrete, pictorial, symbolic, physical, verbal, written, and mental representations of mathematical ideas should be encouraged and used to help students make connections and strengthen their understandings.

Communication works together with reflection to produce new relationships and connections. Students who reflect on what they do and communicate with others about it are in the best position to build useful connections in mathematics.

(Hiebert et al., 1997, p. 6)


Effect Size Class Discussioning: 0.48 Questioning: 0.48

Saskatchewan Curriculum Guide

	4	3 (At Grade Level)	2	1
	The student can independently	The student can independently	The student is developing the	The student is not yet able to
S)	use prior knowledge to choose,	use prior knowledge to choose	ability to select and use	select and use strategies to
e ed	create, and <mark>apply multiple</mark>	and apply strategies to engage	strategies to engage in	engage in mathematical
Strategies	efficient strategies to engage in	in mathematical problems.	mathematical problems.	problems.
St	varied and rich mathematical			
	problems.			
Application				
cat	The student demonstrates	The student demonstrates	The student is developing the	The student is not yet accurate,
Ē.	exemplary accuracy, flexibility,	accuracy, flexibility, and	ability to demonstrate accuracy,	flexible nor efficient when
Ap	and efficiency while engaging in	efficiency when solving math	flexibility, and efficiency when	solving math problems.
	new contexts and complex math	problems.	solving math problems.	
n B	problems.			
ndi				
Understanding	The student can independently	The student is able to justify	The student is able to justify	The student is not yet able to
der	and efficiently justify thinking	thinking through multiple	thinking with a single	justify thinking or show
- L	with multiple representations	representations using	representation while using	representations and is not yet
of	using precise mathematical	mathematical language.	inconsistent mathematical	able to use mathematical
0	language. Logical connections	Logical connections are being	language. Logical connections	language. Logical connections
SS	are being made to synthesize	made across mathematical	are being made across some	are not yet being made across
Expression	mathematical concepts.	concepts.	mathematical concepts.	mathematical concepts.
ω				
-				
				hina and dividia a Manakiana and
	In grade eight , the above criteria apply to: squares and principal square roots of whole numbers; multiplying and dividing (fractions and mixed numbers, integers); percents greater than or equal to zero; and rates, ratios, and proportional reasoning, as defined by the			
	curricular document.	s greater than or equal to zero; and	i rates, ratios, ana proportional rea	soning, as aejinea by the

https://www.edonline.s k.ca/webapps/blackbo ard/content/listContent <u>.jsp?course id= 2869</u> 1 &content id= 355613 1

Notice the necessity of helping our students communicate their mathematical reasoning to be at least a level "2" on the Provincial Rubric

https://saskmath.ca/fostering-a-mathematically-rich-classroom/ https://youtu.be/7lladzWG-bw https://www.edutopia.org/article/4-ways-encourage-math-talks

"The way human beings learn has nothing to do with being kept quiet." - Ralph Peterson

Students consolidate their thinking by verbalizing their reasoning.

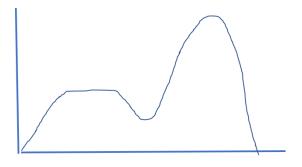
Strategies for "Communicating in Mathematics"

1. Taking regular practice and making it more collaborative

a. Making debates instead of doing independent practice problems—Here's an example using multiple choice questions from text. They are simply copied to cards and students are asked to collaboratively solve.

https://drive.google.com/file/d/1gX7108el6YsZkaMMhloCX1diFTJU9d-K/view?usp=sharing

b. Practicing a new skill from examples on the board? After students have tried your practice questions, put them on the board. Write student initials by each question. Choose 2 students that are not in close proximity. Rule is they have to confer with each other and agree on an answer, then one or both students contributes their solution (with work shown!) on the board.


c. Flip the assignment to make it more collaborative and require deeper thinking:

For example, instead of Draw a graph of this situation, present a graph and have groups of students write the "story" that goes with the graph. Groups take turns

presenting their graph under document camera and explaining the situation they came up

with.

Write a "story" situation that would correlate with this graph. Be sure to label your axes, and explain what is happening at each change of direction/slope on the graph

For example, I've had this graph explained as your ice cream craving over time in the summer, your hair length over time, the money in your bank account, snowfall, and once even how many boyfriends you've had (which made for great discussion since obviously the person in the graph is dating many guys at once! Haha! Maybe the max point of the graph is where all

these guys find out they're dating the same girl and they all dump her). Many times groups have talked about this as a mountain climber, or mountain biker, which tells me they don't understand the idea of relationships in a graph. This is formative assessment evidence you would never get from kids just doing the assignment.

There are lots of text book assignment questions that can be flipped in this way.

2. Formative assessment ideas that generate math talk

a) Commit and toss

http://web.wnlsd.ca/enrichment/FormativeassessmentResources/Commit and Toss.pdf

Commit and Toss

Agree or disagree with this statement:
"Two negatives make a positive"

Agree

Disagree

Justify your answer:

b) Four corners: "In this strategy, students individually choose a response to a question or prompt and move to an area in the room where they join others who share their ideas and responses. This strategy is flexible and can be used for many topics, questions, and problems in mathematics."

https://oame.on.ca/main/files/thinklit/FourCorners2.pdf

c) Gallery Walk https://www.sfusdmath.org/gallery-walk.html

When time is short you can modify this activity to "group hosting" where instead of everyone seeing every group's posted work, pairs of groups "host" each other over at their posters and explain their reasoning.

d) Card matching. Need to create partners for a day? Meet kids at the door, and everyone gets a card (or a quickly cut up hand drawn piece of paper, whatever!)

You can have graphs to match with equations, graphs to match with slope, slope to match with

equation, equations in 2 different forms, polynomials simplified and expanded, fractions as mixed and improper, fractions as models and as numbers, numbers as fraction or decimal, or fraction/decimal/percent for a group of 3, any equation with the solution, etc...so that kids find their partner. They need to be able to justify why that person is their partner (why their cards

match)

3. Peer coaching ideas

a) Math Speed dating https://ispeakmath.org/tag/speed-dating/

Each student is an "expert" at one problem. Works well for multistep problems, solving equations, order of operations, etc. With each new partner the student guides their partner through solving their problem, then the two switch roles (student vs coach) and solve the other person's problem. When everyone is done one side of the long table all move down a seat. Now each person has a new problem or equation to solve, but they still coach their new partner on their own equation, which they got to be an expert at.

- b) Rally Coach (from Cooperative Learning, Dina Kushner) Student A completes a problem while doing a "think aloud"—telling what they're doing. The partner B listens, and coaches. If A gets stuck, B is only allowed to ask prompting questions. Then roles reverse.
- c) Scripted peer coaching—is like Rally Coach but the "coach" (B) has a worked solution to the problem to guide them. Only the coach can see the work and answer. They can ask prompting questions to A who is solving the problem.

There are many more communication strategies that work well! Row problems, Graffiti activities, inside-outside circle, hot-seat questioning, and others. Have fun exploring these!