Focus

Use a variable to represent a set of numbers.

We can use symbols to represent a pattern.

Explore

Tehya won some money in a competition.

She has two choices as to how she gets paid.

Choice 1: \$20 per week for one year

Choice 2: \$400 cash now plus \$12 per week for one year

Which method would pay Tehya more money?
For what reasons might Tehya choose each method of payment?

MINIER

Reflect & Share

Work with another pair of classmates.

For each choice, describe a rule you can use to calculate the total money Tehya has received at any time during the year.

Connect

We can use a variable to represent a number in an expression.

For example, we know there are 100 cm in 1 m.

We can write 1×100 cm in 1 m.

There are 2×100 cm in 2 m.

There are 3×100 cm in 3 m.

Recall that a variable is a letter, such as *n*, that represents a quantity that can vary.

To write an expression for the number of centimetres in any number of metres, we say there are $n \times 100$ cm in n metres.

n is a variable.

n represents any number we choose.

We can use any letter, such as *n* or *x*, as a variable.

The expression $n \times 100$ is written as 100n.

100*n* is an **algebraic expression**.

Variables are written in italics so they are not confused with units of measurement.

Here are some other algebraic expressions, and their meanings. In each case, n represents the number.

- Three more than a number: 3 + n or n + 3
- Seven times a number: 7n
- Eight less than a number: n-8
- A number divided by 20: $\frac{n}{20}$

When we replace a variable with a number in an algebraic expression, we *evaluate* the expression. That is, we find the value of the expression for a particular value of the variable.

7*n* means $7 \times n$.

Example

Write each algebraic expression in words.

Then evaluate for the value of the variable given.

a)
$$5k + 2$$
 for $k = 3$

b)
$$32 - \frac{x}{4}$$
 for $x = 20$

A Solution

a) 5k + 2 means 5 times a number, then add 2.

Replace k with 3 in the expression 5k + 2.

Then use the order of operations.

$$5k + 2 = 5 \times 3 + 2$$
 Multiply first.
= 15 + 2 Add.
= 17

b) $32 - \frac{x}{4}$ means 32 minus a number divided by 4.

Replace x with 20 in the expression $32 - \frac{x}{4}$.

 $\frac{x}{4}$ means $x \div 4$.

Then use the order of operations.

$$32 - \frac{x}{4} = 32 - \frac{20}{4}$$
 Divide first.
= 32 - 5 Subtract.
= 27

In the expression 5k + 2,

- 5 is the **numerical coefficient** of the variable.
- 2 is the constant term.
- *k* is the *variable*.

The variable represents any number in a set of numbers.

Practice

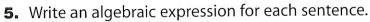
1. Identify the numerical coefficient, the variable, and the constant term in each algebraic expression.

a) 3x + 2

b) 5n

c) w + 3

d) 2p + 4


- **2.** An algebraic expression has variable *p*, numerical coefficient 7, and constant term 9.

 Write as many different algebraic expressions as you can that fit this description.
- 3. Write an algebraic expression for each phrase.
 - a) six more than a number
 - b) a number multiplied by eight
 - c) a number decreased by six
 - d) a number divided by four
- 4. A person earns \$4 for each hour he spends baby-sitting.
 - a) Find the money earned for each time.

i) 5 h

ii) 8 h

b) Write an algebraic expression you could use to find the money earned in *t* hours.

- a) Double a number and add three.
- b) Subtract five from a number, then multiply by two.
- c) Divide a number by seven, then add six.
- d) A number is subtracted from twenty-eight.
- e) Twenty-eight is subtracted from a number.
- **6.** a) Write an algebraic expression for each phrase.
 - i) four more than a number
 - ii) a number added to four
 - iii) four less than a number
 - iv) a number subtracted from four
 - b) How are the expressions in part a alike? How are they different?

7. Evaluate each expression by replacing *x* with 4.

a)
$$x + 5$$

c)
$$2x - 1$$

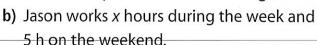
d)
$$\frac{x}{2}$$

f)
$$20 - 2x$$

8. Evaluate each expression by replacing z with 7.

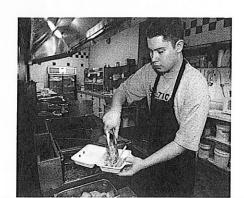
a)
$$z + 12$$

b)
$$10 - z$$


d)
$$3z - 3$$

f)
$$3 + \frac{z}{7}$$

9. Assessment Focus Jason works at a local fish and chips restaurant.


He earns \$7/h during the week, and \$9/h on the weekend.

a) Jason works 8 h during the week and12 h on the weekend.Write an expression for his earnings.

Write an expression for his earnings.

c) Jason needs \$115 to buy sports equipment.
 He worked 5 h on the weekend.
 How many hours does Jason have to work during the week to have the money he needs?

10. Take It Further A value of *n* is substituted in each expression to get the number in the box. Find each value of *n*.

- **a)** 5n
- 30
- **b)** 3*n* − 1
- 11

- **c)** 4n + 7
- 15
- d) 5n-4
- 11

- **e)** 4 + 6n
- 40
- f) $\frac{n}{8}$
- 5

Reflect

Explain why it is important to use the order of operations when evaluating an algebraic expression.

Use an example in your explanation.